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ABSTRACT

Recently, Li4Ti5O12 (LTO) has been experimentally proven as a promising broadband electrochromic material for applications like smart
windows, thermal management, and infrared camouflage. However, a detailed understanding of the fundamental mechanism of these
phenomena is still lacking, especially how and why the optical spectrum changes with lithiation. We fill this knowledge gap by performing a
detailed analysis of LTO’s optical properties during charging/discharging via a robust study of the density functional theory (DFT). Our
study suggests that the absorption of infrared light is highly sensitive to intercalation of Li in the LTO lattice, in contrast to that of visible
wavelengths. This unique characteristic of LTO offers an effective mechanism in controlling infrared radiation intensity with minimal
attenuation on the transmission of visible light. Furthermore, the DFT study also reveals that the electrochemical intercalation of Li
introduces donor states which will gradually expand and move to deeper levels in the forbidden band. This electronic structure change leads
to better conductivity and lower transmittance, which is in line with the experimental observation in the literature.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099330

Electrochromism is a phenomenon related to the reversible
changes in optical properties (e.g., absorbance, reflectance, and trans-
mittance) of a material induced by externally applied potentials. Since
the pioneering work by Deb using tungsten oxide films in 1969,1 elec-
trochromic materials are gradually attracting significant attention in
academia and industry.2,3 Traditional studies focus on color changes
in the visible region, which find broad potential and practical applica-
tions such as auto-dimming rearview mirrors and smart windows.
The latter is a major application area due to the popularity of large
window panes in modern buildings. The active layer of an electrochro-
mic panel is typically a two-electrode electrochemical system which is
sealed and isolated from an ambient environment. Smart glass can
meet the design aspirations of comfortable illumination, being able to
increase or reduce light transmission, which makes them very attrac-
tive for saving electric energy, especially in view of global warming.
Over the last decade, increasing interest has been shifting to the infra-
red (IR) region, which could be exploitable for infrared camouflage,
data storage, optical communication, and thermal management in
buildings and spacecraft.4–8

After decades of active research, the vast majority of materials
used in the field of electrochromism are either conductive polymers,
cyanometallates (e.g., Prussian Blue), or transition metal oxides.2 The
metal oxides have been extensively studied due to their remarkable
long-term and high-temperature stability. Li4Ti5O12 (LTO), which is a
promising anode material because of its notable “zero-strain” charac-
teristic,9 was first observed to change color under applied voltage in
2010.10 Last year, Mandal et al.11 reported its electrochromic proper-
ties in the infrared region. The broadband electrochromic properties,
large tunability, and excellent thermal stability give LTO attractive
potential in a wide range of applications.

However, understanding of the mechanisms responsible for
LTO’s electrochromism is still lacking. For example, Mandal et al.
argued that Li4Ti5O12 (bleached state) has a high reflectance when
nanostructured, compared to Li12Ti5O12 (colored state). But this
explanation violates the general rule that, the better the conductivity,
the higher the reflectivity; this high reflectivity is mainly contributed to
the substrate material (Al), which is coated by a low absorbance mate-
rial (Li4Ti5O12). This result highlights the difficulty of obtaining
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accurate results in experiments, which will be affected by instruments,
test methods, surroundings, and many other factors. Computational
and theoretical investigation is urgently needed to supplement and
explain the experiments due to its ability to control such factors and to
provide direct insights into electronic structure and related properties,
i.e., quantitative relationship between the spectrum and the degree of
lithiation.

Some basic properties of LTO remain unknown: (i) detailed opti-
cal properties have not been calculated, particularly in the infrared
region; (ii) the corresponding electronic structure of LTO has not been
quantitatively investigated during the charging/discharging process;
(iii) the electronic structure-property relationship has not been dis-
cussed or analyzed. That is, the underlying mechanism of its electro-
chromism has not been made clear. Therefore, to fill these gaps, the
present work reports the optical and electronic properties of LTO
obtained by density functional theory (DFT). Our results thus help
interpret and refine previous experimental conclusions and offer
insights into the electrochromic properties of LTO.

The rest of this manuscript proceeds as follows: First, we summa-
rize the materials and calculation method. Next, we explain the elec-
trochromic mechanism of LTO via electronic properties. Then, we
analyze the optical properties of LTO with and without intercalated Li.
Finally, we discuss applications of LTO and compare its performance
with WO3 before making conclusion.

The crystal structure of spinel Li4Ti5O12 belongs to the Fd�3m
space group (No. 227). Li and O ions occupy the tetrahedral 8a sites
and the octahedral 32e sites, respectively. One-sixth of the octahedral
16d sites are randomly occupied by Li, while Ti fills in the remaining
5/6th. The structure can be described as [Li3]8a[LiTi5]16d[O12]32e. In
order to satisfy the stoichiometry of Li4Ti5O12, a 1� 1� 3 supercell
model is constructed to give the appropriate ratio of all elements. We
adopt the structure found in the literature,12,13 which has the lowest
total energy per unit cell, out of many possibilities.

We perform spin-polarized DFT calculations,14,15 as imple-
mented in the Vienna ab initio Simulation Package (VASP),16,17 using
generalized gradient approximation (GGA) parameterized by Perdew-
Burke-Ernzerhof (PBE).18 The interaction potentials of the core elec-
trons were replaced by projector augmented wave (PAW)19 pseudopo-
tentials (Li_sv, Ti_pv, O). All calculations employed a 600 eV cutoff
energy for the plane wave basis.

For structure relaxation, k-point sampling was done on a
3� 3� 1 C centered Monkhorst-Pack grid, with a small broadening
width of Gaussian smearing (0.05 eV). The energy difference and force
required for convergence were set to 10�6eV and 0.01 eV/Å, respec-
tively, which achieved a reasonable balance between accuracy and
numerical cost. All atoms were fully relaxed to simulate the optimized
structure of each lattice model. For optical property calculations, the
number of bands was tripled, compared to the ground state. As Ti-3d
states have strong on-site Coulomb interaction of localized electrons,
DFTþU corrections were introduced with U¼ 2.5 eV to overcome
shortcomings of PBE in structure relaxation and optical property
calculations.20,21

To better understand the bandgap of LTO, we carried out Heyd-
Scuseria-Ernzerhof (HSE06) hybrid functional calculations in the den-
sity of states (DOS),22–25 with the k-space sampled only by the C point.
HSE06 is generally better at predicting energy gaps but is significantly
more costly than PBEþU, which meant we could not use it for all

applications. The results from PBEþU were in generally good agree-
ment with HSE06, supporting its use for other calculations. The details
are provided in the supplementary material.

The highly contrasting optical behavior of Li4Ti5O12 and
Li7Ti5O12 is the macroscopic performance of the electronic structure.
Figure 1 reports the DOS and partial DOS results. Li4Ti5O12 is a semi-
conductor with a calculated bandgap of 3.93 eV (HSE06), slightly
larger than results (3.87 eV and 3.73 eV) in the literature.26,27

The charging process from Li4Ti5O12 to Li7Ti5O12 involves Li
intercalating into LTO. The Li atom can easily lose an electron, forming
a positive electric center and an additional electron. As the electronega-
tivity of Ti (1.54) is larger than that of Li (0.98), this excess electron is
more likely to be captured by Ti and occupy the dxy orbit, which lifts the
Fermi level and forms donor states next to the conduction band (CB),
revealed by the peak in the bandgap in Fig. 1. The electrons in the dxy
orbit are weakly bounded by Ti, and so they have larger probability to
overcome the donor ionization energy, entering the CB to be free elec-
trons. This kind of impurity excitation is much easier than intrinsic exci-
tation, which excites electrons in the valence band (VB) to the CB
directly. That is why the absorption coefficient in the infrared region is
greatly increased after charging. With more intercalated Li, the gap
between VB and donor states narrows down to 2.39 eV, while the gap
between donor states and CB and width of donor states expand to 0.67
and 1.28 eV, respectively. As a result, visible light (VIS) photons with
the energy of 0.67–1.95 eV and above 2.39 eV will be absorbed by lithi-
ated LTO, which means high transmittance from 519 nm to 636nm (in
accordance with Fig. 2). The actual light absorption process is more
complicated, involving the coupling of phonons and photons, leading to
lower transmittance in this wavelength range.

According to Maxwell’s equations, the relationship between con-
ductivity (r) and absorption coefficient (a) is shown in the supple-
mentary material. For a poorly conductive material (x, angular
frequency, x ! 0), the absorption coefficient (a) is nearly zero.
However, for good conductive materials, the absorption coefficient (a)
can be very large,

FIG. 1. Total and projected DOS. The Fermi level is aligned to zero.
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where e is the permittivity and l the permeability of the material; e0 is
the permittivity of free space and l0 the permeability of free space.

As a result, due to the appearance of the donor states, the energy
required to excite electrons into the CB is lower (both impurity excita-
tion and intrinsic excitation). So the conductivity is improved, and the
absorption coefficient is enhanced according to Eq. (1). Specific elec-
tronic information in the DOS graph and charge population analysis
can be found in the supplementary material.

We now turn to optical theory. Light radiation falling onto a
material will be reflected, absorbed, and transmitted (Fig. S2). The
material’s transmittance (T), absorbance (A), and reflectance (R) are
then subject to the equation:28 TðkÞ þ AðkÞ þ RðkÞ ¼ I0. According
to the Beer-Lambert law (a: absorption; x: thickness): AðkÞ ¼ I0ð1
�e�axÞ, absorption is zero at the upper surface (x¼ 0) of a material.
Here, the vertical incident light intensity is I0. Following is the specific
properties of LTO.

In visible light, the change in reflectivity from Li4Ti5O12

to Li7Ti5O12 is negligible (Fig. S3). The increase in the absorption coef-
ficient is extremely substantial, however. As a result, the transmittance
(Fig. 2) is gradually lowered, and the color deepens, which can be
calculated by integrating the transmitted energy (T) in sunlight (k1
¼ 400nm and k2¼ 700nm),

T ¼

Xk2
k1

TðkÞSkDk

Xk2
k1

SkDk

; (2)

where Sk is the relative spectral distribution of solar radiation, T(k) is
spectral transmittance of LTO, and k is the wavelength. According to
Fig. 2 and the solar spectrum at the Earth’s surface,29 the transmitted
energy of sunlight of different colors through a 5lm thick LTO is listed
in Table I. After intercalation with a small amount of Li to form
Li4.125Ti5O12, LTO absorbs more light at the wavelength of 600–700nm,

corresponding to the red-orange color. Because of the redshift caused by
the underestimated bandgap using the PBE method, the red and orange
light will actually be absorbed more in Li4.125Ti5O12 (T(lithiated)).
Therefore, LTO shows the corresponding complementary color (the
color wheel in Fig. 2), a mixture of blue and green.

From Fig. 2, the more the Li intercalated in LTO, the higher the
absorption and the lower the transmittance. Using Eq. (2) and the Air
Mass 1.5 solar spectrum in the visible region, the transmitted energy
for Li4Ti5O12 accounts for 41.7% of total energy of visible light. By
contrast, the value for Li7Ti5O12 is only 3.8%, which makes it impossi-
ble for visible light to transfer through Li7Ti5O12 and makes it appear
black. Considering that the secondary and multiple reflections from
the interface (LTO/air) within the LTOmaterial can increase transmit-
tance, especially for the material with a low absorption coefficient
(Li4Ti5O12), the range of adjustable light transmittance is likely to be
larger than calculated. This theoretical result is in good agreement
with reported experimental transmittance.30,31

Quantitative results of transmitted solar energy of different wave-
lengths are shown in Fig. 3, using Eq. (2) in the range of infrared (IR),
visible light (VIS), and ultraviolet (UV). After charging to Li4.125Ti5O12

from Li4Ti5O12, the energy of transmitted VIS decreases only 1%, while
transmitted IR shows a more substantial drop from 35% to 21%.

FIG. 2. The transmittance of LTO in visible light.

TABLE I. Transmitted energy of sunlight of different colors for delithiated/lithiated
(Li4Ti5O12/Li4.125Ti5O12) LTO (T: Transmitted energy, W/m2).

Wavelength/nm T(delithiated) T(lithiated) DT

380–450 (Violet) 8.97 9.68 þ0.71
450–495 (Blue) 18.96 19.24 þ0.28
495–570 (Green) 42.65 42.62 �0.03
570–590 (Yellow) 12.75 12.29 �0.46
590–620 (Orange) 19.73 18.34 �1.39
620–750 (Red) 84.47 69.27 �15.20

FIG. 3. Transmitted solar energy through a 5lm thick LTO. 100% corresponds to the
total energy of the AM 1.5 solar spectrum. UV contributions are essentially zero (maxi-
mum 0.06%) in all cases (VIS, 0.4–0.7lm; IR, 0.7–2.75lm; UV, 0.01–0.4lm).
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The difference will be more noticeable when charged to Li5Ti5O12,
which means that the absorption of infrared is highly sensitive to the
intercalation of Li and even a small amount can significantly reduce
transmittance of IR while maintaining transmittance of VIS.

The reflectivity and absorption coefficient of LTO in the same
wavelength of the solar spectrum [Figs. 4(a) and 4(b)] are increased in
general during lithiation, although the reflectivity coefficient is slightly
reduced in the wavelength of 0.25–1.5lm. Compared to the mild
increase in the reflectivity coefficient, the absorption coefficient has
increased by four orders of magnitude, which makes Li4Ti5O12 change
from an infrared transmission material to an infrared absorption
material. The calculated transmittance of a 5lm thick LTO is shown
in Fig. 4(c), with the integrated transmittance between 63% and 0.2%.
More importantly, consistent with the results in Fig. 3, the transmit-
tance of Li4.125Ti5O12, which is intercalated with a small amount of Li,
has a rapid decrease in the infrared range.

In the infrared range with a longer wavelength (3–15 lm), both
reflection and absorption coefficients increase as x increases in
Li4+xTi5O12 (0 � x � 3). There are two crucial infrared atmosphere
windows, 3–5 lm and 8–14 lm, which are the operating wavelength
ranges of infrared detection equipment and are denoted in light yellow
in Figs. 4(d) and 4(e). The transmittance curve in Fig. 4(f) shows good
adjustable performance in these two windows, from 70% to nearly 0%
as x increases in Li4+xTi5O12. As a result, LTO can “appear” or
“disappear” in infrared detection equipment by an applied voltage,
analogous to previously reported behavior in WO3.

33

With the mechanism and properties mentioned above, LTO can
be used in a wide range of applications in the electrochromic area.

In the visible light region, the electrochromic performance of
LTO is remarkable since a single active LTO layer can achieve a trans-
mittance range of 3.8%–41.7%, which has commercial potential in
practical applications.

In the solar spectrum, on one hand, LTO has a transmittance range
of 0.2%–63%. Considering infrared accounts for 52% to 55% of the
energy of sunlight at Earth’s surface and infrared has a significant ther-
mal effect, the electrochromic properties of LTO can be effectively used
to tune the transmission of infrared radiation, which allows the applica-
tion of LTO in thermal management. On the other hand, the absorption
coefficient of LTO in infrared is much more sensitive than in visible
light. Such infrared absorption selectivity implies that when used as
smart windows for buildings, the heat transmission and brightness can
be controlled separately to a large extent. In contrast, WO3, the most fre-
quently used inorganic electrochromic material, has a high absorption
coefficient in infrared under applied voltage, and therefore, the tunability
is very limited. For example, LTO can lower heat transmission without
significantly sacrificing brightness in summer and utilize the thermal
effect of infrared in winter, which cannot be achieved by WO3 due to its
narrow bandgap. This can help reduce electricity consumption in build-
ings and thus the dependence on the cooling and heating system.

In mid- and long-wavelength infrared (MWIR and LWIR, 3–15
lm), the transmittance range of LTO is 0%–70%, making LTO an out-
standing infrared camouflage material. In comparison, WO3 has not
been used for applications since the transmittance changes in this
region are not significant.11

To conclude, this study reports DFT investigation of optical
properties and DOS of the LTO material during the charging/

FIG. 4. (a), (b), and (c) are the reflectivity, absorption, and transmittance spectrum, and the gray area is the AM 1.5 solar spectrum.29 (d), (e), and (f) are the reflectivity, absorp-
tion, and transmittance spectrum in midwavelength infrared (MWIR, 3–8 lm) and long-wavelength infrared (LWIR, 8–15 lm).32
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discharging process. The results reported here theoretically demon-
strate that Li4Ti5O12 has excellent properties as a broadband electro-
chromic material for optical and thermal management. The
mechanism behind it is the donor states in the forbidden band. Other
methods which facilitate the formation of donor states can make simi-
lar changes to the electronic structure, including positive ion intersti-
tial, higher-valence cation replacement, and negative ion vacancy.9,34

These methods can be used to change the range of variations of the
absorption coefficient and thereby tune the range of thermal transmit-
tance. We recommend a thorough experimental study of the optical
properties of LTO subject to these variations, as the theoretical proper-
ties uncovered in this work suggest that it is a promising material for
more extensive applications in future smart windows.

See the supplementary material for more details and analysis
about the DOS graph and electron population.

We wish to acknowledge the support of ARC Discovery from the
Australian Research Council (No. DP170103721) and Soft Science
Research Project of Guangdong Province (No. 2017B030301013).
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