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Recently, many high-throughput calculation materials databases have been constructed and found wide applications. However, a
database is only useful if its content is reliable and sufficiently accurate. It is thus of paramount importance to gauge the
reliabilities and accuracies of these databases. Although many properties have been predicted accurately in these databases,
electronic band gap is well known to be underestimated by traditional density functional theory (DFT) calculations under local
density approximation (LDA), which becomes a challenging problem for materials database building. Here, we introduce
MaterialGo (http://www.pkusam.com/data-base.html), a new database calculating the band structures of crystals using both
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional.
Comparing different PBE databases, it is found that their band gaps are consistent when no U parameter is used for transition
metal d-state or heavy element f-state to correct their self-interaction error, but rather different when PBE+U are used, mostly
because of the different values of U used in different database. HSE calculations under standard parameters will give larger band
gaps that are closer to experiment. Based on the high-throughput HSE calculations over 10000 crystal structures, we might have a
better understanding of the relationship between crystal structures and electronic structures, which will help us to further explore
material genome science and engineering.
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1 Introduction

With the recent progress of machine learning techniques, big
data are becoming a major tool for material research [1–3].
High-throughput ab initio calculations have fueled the recent
frenzy for material science database building. While pre-
vious databases like Inorganic Crystal Structure Database
(ICSD) [4,5], The National Institute of Standards and
Technology (NIST) database (https://www.nist.gov/data),

American Mineralogist Crystal Structure Database [6], just
to name a few, are mostly built on top of experimental results
over decades, materials databases built in the last few years
are based on ab initio calculations. The maturity of ab initio
methods, especially the ones for plane wave density func-
tional theory (DFT), the availability of high throughput
computation hardware and automatic workflow framework
made the rapid developments of such databases possible. The
framework development for automatic calculation and data
storage is important. For example, AiiDA (Automated In-
teractive Infrastructure and Database for Computational
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Science) [7] offers a framework with which one can easily
manage the calculation and perform the analysis and storage
of the results. The materials database building effort was
originally initialized by the Materials Genome Initiative
(MGI) by U.S. government started in 2011 (https://www.
mgi.gov/). The MGI resulted in several widely used high
throughput databases like Materials Project (MP) [8,9],
Automatic-FLOW for Materials Discovery (AFLOW) [10–
12] and Open Quantum Materials Database (OQMD) [13].
While OQMD focuses on structural information and phase
diagram of compounds, Materials Project and AFLOW
provide a wider array of properties, like binding energy,
phase diagram and energy band gap. Each of these databases
has tens of thousands of materials data entries. In Europe, the
newly developed Novel Materials Discovery (NOMAD)
project (https://www.nomad-coe.eu/) maintains a repository
to store detailed input and output file during calculation and
call for inputs from the whole electronic structure commu-
nity. In China, the Chinese Material Genome Engineering
(MGE) has been started two years ago, resulting many works
on high-throughput computation, machine learning and big
data [14–17].
Given the wide use of all these databases, it is thus im-

perative to know the reliability of these databases. Although
theoretically speaking, data in all these databases should be
the same since they are all generated using DFT and plane
wave DFT codes, in reality different calculation details and
procedures have made them different. One major factor is
atomic positions. For a given compound, although most
databases take the initial atomic structures from experi-
mental results, atomic relaxations can lead to different
structures. Another major factor is the use of PBE+Umethod
[18]. The U parameter is often used for transition metal d-
state or heavy element f-state to correct their self-interaction
error. In practice, the U is used as an empirical parameter.
However, for a given system, some databases use U while
some others do not use U. For example, MP only uses U
parameter for a small set of transition metals, while AFLOW
uses U also for some p-block metals and Lanthanides. Even
when both databases use PBE+U, the U values can be dif-
ferent. For this purpose, a cross-database analysis will be
very useful. It will provide guidance for the users in regards
to the reliability and accuracy of these databases. It will also
be useful to compare these databases with results from more
accurate methods like HSE [19]. For this purpose, we will
include our own new database which uses HSE to calculate
the electronic structure. Lastly, it is important to compare the
calculated database results with experiments when the ex-
perimental values are available.
In this work, we introduce MaterialGo (MG), a new da-

tabase calculating the band structures of crystals not only by
PBE but also by HSE method. Then we compare the band
gap predictions of MP, AFLOW, and MG databases. We

focus on band gap since this is a very difficult aspect of the
current electronic structure calculations and it is useful for a
wide range of applications, from solar cells to light emission
diodes [20,21]. For the HSE functional, there are many
previous works [22,23] compared its band gaps to experi-
ments, but they are done in relatively small sets of materials.
Here, we present HSE band gaps for tens of thousands of
systems by high-throughput calculation of electronic struc-
ture. Through the comparison, we would like to address the
following questions: (1) how large are the band gap differ-
ences between different databases? (2) what is the cause of
these band gap differences: atomic structures, PBE+U
parameters, or some other factors? (3) how much does the
HSE improve band gap calculations? (4) what is the general
error of the band gaps compared with experimental values?

2 Calculation workflow and method

2.1 The high-throughput workflow

As a database focusing on electronic structures, during our
calculations for MaterialGo, crystal atomic structures are
taken from MP database without further relaxations. These
are the DFT optimized structures in MP starting from the
initial experimental structures. Input files are generated ac-
cording to structure files by scripts, and then batches of jobs
are submitted to a PBS queueing system. Other scripts are
used to automatically check whether a calculation is suc-
cessful, re-adjust input parameters for unsuccessful jobs,
extract useful information from finished jobs, and show the
results on web.
Our database calculations are carried out using the PWmat

[24,25] code. For the treatment of the exchange-correlation
effect, both PBE and HSE06 are used. NCPP-SG15-PBE
pseudopotential [26,27] is used for both PBE and HSE06
calculation. A plane wave basis set with a cutoff of 50 Ryd is
used. The Brillouin Zone k-meshes are generated by Mon-
khorst-Pack method with the criterion that the number of k-
points multiplied by the number of atoms is roughly around
1000.
The most time-consuming step is the calculation of the

hybrid functional under plane wave basis, as it needs many
Fourier transformations to carry out the Fock exchange in-
tegral. The recently proposed ACE [28] has been used to
accelerate the hybrid functional self-consistent calculation.
This method has been implemented in the PWmat code, and
the GPU usage of the PWmat code also speeds up its cal-
culation significantly. Due to such advances, it becomes
practical to use hybrid functional in high throughput calcu-
lations. In the part of hybrid functionals, there are many
versions of the hybrid method with different mixing para-
meters between the Fock exchange term and the semilocal
exchange functional. We have decided to use the original

1424 Jie J S, et al. Sci China Tech Sci August (2019) Vol.62 No.8

https://www.mgi.gov/
https://www.mgi.gov/
https://www.nomad-coe.eu/


HSE06 parameter of Krukau, Vydrov, Izmaylov and Scuseria
[29], α=0.25 and ω=0.1058, which is mostly designed for
relatively low band gap semiconductors.
To test the accuracy of HSE in PWmat, calculated band

gaps are validated with the SC/40 test set as proposed by
Heyd et al. [30] (Figure S1 (Supporting Information)). As
one can see, the PWmat calculated HSE06 band gaps agree
well with those reported in original literature, where loca-
lized orbitals are used. Such agreement verifies the correct-
ness of PWmat HSE calculations. The speed of our workflow
can be shown in the following data: for structures that have
MP ID less than 21000, exactly 2000 have been calculated
successfully. These structures have in total 15553 atoms, and
calculations take 18279125 s (approximately 212 days) in
total. So that an average of about 2.5 h is needed for a
structure with an average of about 8 atoms, covering both
PBE and HSE calculations.

2.2 The presentation of our data

All the data which are calculated by our workflow are open
in public in our website (http://www.pkusam.com/data-base.
html). One can click the name of elements from the periodic
table to search materials (Figure 1). The webpage has been
linked to our database. After selecting a name of one mate-
rial, 3D atomic structures, cell parameters, electronic band
structures are listed in the webpage. For each crystal, we have
also provided a link to the original database (the Materials
Project) from which we downloaded the atomic structures
from. All input files in PWmat format can also be down-
loaded from our website. Graphics which can be zoomed in
and out of band structures and density of states calculated by
HSE and PBE are also shown in our web site separately.

3 Results and discussion

3.1 MG database

More than 10000 structures have been calculated so far in
MG. The distribution of calculated structures is illustrated in
Figure 2. In Figure 2, a structure is classified into alloy if it
contains only metals in its chemical formula. Similarly,
oxides contain O and any number of metals, halides contain
one of F, Cl, Br, I and any number of metals, chalcogenides
contain one of S, Se, Te and any number of metals, oxo and
chalcohalides contain one of O, S, Se, Te, one of F, Cl, Br, I
and any number of metals, oxysalts contain O, one of B, C,
N, Si, P, S, As, Se, Te and any number of metals.

3.2 Comparison between MP, AFLOW and MG all
with PBE calculations

The first comparison we made is between different PBE-

related database results, namely MP, AFLOW and PBE part
of MG. MG uses no U parameters for PBE calculation, while
the MP and AFLOW use quite different U values, as de-
scribed in Table S1 (Supporting Information). These three
databases also vary in the choice of other calculation para-
meters (Table S2 and Sect. 2.1). While the MG is calculated
with the PWmat code with the optimized Vanderbilt norm
conserving (OVNC) pseudopotential NCPP-SG15-PBE,
both AFLOW and MP are calculated with the VASP code
using augmented plane wave (PAW) pseudopotential. The
PWmat yields the result almost the same as the PWscf cal-
culation, and NCPP-SG15-PBE generally can give a band
gap very close to that of PAW result. Thus, a major source of
difference might come from the difference of using U. In
Figure 3, we have shown the comparison with different ca-
tegories of the U usages.
In Figure 3(a)–(c), one small point corresponds to one

crystal structure. In the comparison, there are about 10000
crystal structures used. We first notice that there are struc-
tures for which one database predicts their band gaps as zero
(metals), while the other database predicts their band gaps as
nonzero (insulators). It is worth knowing what causes such
dramatic differences. For this, we have divided the com-
parison into three different cases, and listed the results in
Table 1. One case is both databases use U; another case is
only one database uses U; and the third case is none of the
databases use U. We see that, if none of them use U, the
metal/insulator assignment between two data bases are much
closer, only about 3% to 7% different assignment. On the
other hand, if only one data base uses U, there could be 27%
different assignment. For the cases, which both useU (MP vs
AFLOW), the difference is 15%. This shows the significant
uncertainty caused by the use of U. We also see that, in terms
the metal/insulator assignment, the AFLOW/MG-PBE has
the smallest difference, while MP/MG-PBE and MP/
AFLOW has similar differences.
We then look at the overall agreements between databases

shown in Figure 3(a)–(c). Once again, we divide the cases
into three categories: both-U; one-U, none-U. The closest
agreement comes from the none-U category represented by
the red dots in the figures. In Figure 3(a)–(c), the red dots are
quite close to the diagonal, and the Pearson correlation
coefficients for them are 0.918, 0.941 and 0.931, respec-
tively. If we only consider the structures that are assigned as
insulators by both databases and only for none-U, the cor-
relation coefficients further rise to 0.984, 0.978 and 0.983,
respectively. This shows that in the absence of the influence
of U parameter, these databases give highly reliable results,
and their mutual correlations are high. The correlation
coefficient represents whether two data sets are linearly
correlated, but even if the correlation coefficient equals one,
it does not mean they are the same, since they can be differed
by a scaling factor and a shift. We thus have also calculated
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their root mean square (RMS) band gap differences, only
taken into account the insulator ones in both databases and
none-U cases. The RMS band gap differences are 0.309,
0.388, 0.328 eV for the three comparisons in Figure 3(a)–(c)
respectively. The relatively small RMS differences mean
these databases are not only linearly correlated, they are
indeed close to each other. We do see slightly more outliners
(away from the y=x black line) for the MP-AFLOW com-
parison for the red dot in the higher band gap region, where

AFLOW tends to predict smaller band gaps. Given that they
both use VASP code, the difference might come from the
different DFT relaxed structure. On the other hand, the MG
and MP have the same crystal structures, they have less such
outliners and also have the smallest RMS of the band gap
differences, despite of the fact that one is calculated with
VASP while the other is calculated with PWmat and different
pseudopotentials are used. This means the different codes
and pseudopotential are less of a problem, and the crystal

Figure 1 (Color online) (a) The home webpage of periodic table to search materials; (b) 3D materials structures and cell parameters shown in our webpage;
(c) structures can be rotated in webpage HSE band structures and electronic density of states. Band structures can be zoomed in or out for details and whole
pictures.
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Figure 2 (Color online) (a) The distribution of number of species of calculated structures in our database; (b) the distribution of number of atoms in the cell
of calculated structures in our database; (c)–(e) the distribution of different kinds of compounds of binary, ternary and quaternary compounds in our database.
Structures with other numbers of species are fewer and not further analyzed.

Figure 3 (Color online) Comparison of the three PBE-related databases. (a), (b), (c) are comparisons between MP and MG PBE, AFLOW and MG PBE,
AFLOW and MP, respectively. In each subplot, red points correspond to structures that have no +U species in either database, blue points are those that have
+U species in only one database, and green points are structures that have +U species in both databases. The black line is the y=x identity line. (d) shows
structures that have exactly one +U specie in both MP and AFLOW. It shows the relationship between the U difference of a cation atom (vertical axis) and the
predicted band gap difference (horizontal axis) between MP and AFLOW. Each short vertical bar represents one material containing the transition metal
elements listed on the vertical axis.
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structure difference might play a bigger role when getting
different results. But overall, when no U parameter is used,
and both databases predict a crystal as insulator, the results
are consistent.
We next look at the comparison where one database uses U

and the other does not use U, as represented by the blue dots
in Figure 3(a)–(c). The trend is clear, the database with U
predicts much bigger band gaps than the one not using U.
The correlation coefficients for the blue dots in Figure 3(a)–
(c) are 0.638, 0.870 and 0.856, while the RMS band gap
differences are 1.379, 0.770 and 0.796 eV, respectively.
Thus, there is no simple correlation between the +U gaps and
non-U gaps, it is thus impossible to use a simple scaling to
yield the +U result from the non-U result.
We have also shown the results where both ALFOW and

MP use U, as represented by the green dots in Figure 3(c).
We see that the spread is relatively large, although smaller
than the one-U cases. One of the reasons is that the U’s used
in AFLOW and MP can be rather different for the same
element containing d-state. To illustrate that, we have shown
the difference of U between AFLOWand MP for different d-
containing elements as the vertical axis in Figure 3(d), and
the predicted band gap differences as the horizontal axis. The
difference in U values varies from –1.68 eV for Co (3.32 eV
in MP and 5.0 eV in AFLOW) to 4 eV for W (6.2 eV in MP
and 2.2 eV in AFLOW). Surprisingly, we do not see any
obvious trend for the corresponding band gap difference. The
small U difference case (Cr) has similar band gap spread as
the large U difference cases (Co and W). Nevertheless, there
is a weak trend that largerU tends to lead to bigger band gap,
as represented by a slight center of mass shift towards right
from Co to W.
As a summary, different PBE-related databases sometimes

disagree on whether a structure is a metal or an insulator, and
significant band gap difference can exist for the insulator
cases. However, the main source of the difference comes
from the different usage of Hubbard parameter U when PBE
+U is used. There are cases which one database uses U, but
the other database does not use, or when both useU, but their
values are very different. When neither of the data base uses
U, the relative agreement is good: the correlation coefficients

are in the range of 0.98; the RMS band gap difference is
0.3–0.4 eV; and the mis-identification rate between metal/
insulator is about a few percent. We thus identify the un-
certainty of U as the main source of scatters in the predicted
band gaps. On the other hand, the discrepancies caused by
different atomic structure (due to different relaxation
scheme), or different pseudopotentials and codes, are rela-
tively small.

3.3 The effect of HSE calculation and comparison with
experiment

One of the major advances for MG is the use of hybrid
exchange functional in addition to the PBE calculations. The
hybrid functional is designed to provide a better prediction
for the semiconductor band gap, although its computational
cost is much higher than that of PBE especially for plane
wave-based codes.
We have plotted the comparison between MG+HSE, MG

+PBE, AFLOW+PBE (w/o U) (with or without U), MP
+PBE (w/o U) in Figure 4(a). We have used the MG+HSE as
the x-axis since this is the one clearly different from the other
three PBE results. First, comparing MG+HSE with MG
+PBE, we see that the different identification rate between
metal/insulator is about 8% (Table 2). Thus, the difference in
calculation methods does not dramatically change the metal/
insulator identification rate. As for all the insulator cases,
there is a clear trend that HSE band gaps are systematically
larger than PBE gaps. If only the no-U data are used for the
three PBE results, then the correlation coefficients of them to
the MG+HSE are 0.944, 0.938, 0.919. These are rather high,
indicating a simple scaling correction can be used to convert
the PBE (without U) results to HSE results. The multi-
plication factor for the three cases are 0.782, 0.765, 0.793 for
MP/MG+HSE, AFLOW/MG+HSE, and MG+PBE/MG
+HSE, respectively.
It will be more interesting to compare the calculated results

with experiments. Unfortunately, the experimental band gaps
for the 10000 structures are not all available. Nevertheless,
we have collected about 100 structures with their band gaps
listed in Table S3. They are also represented in Figure 4(a).

Table 1 The influence of Hubbard Parameter on the consistency of metal-insulator classification between different PBE-related databases

MP vs MG PBE AFLOW vs MG PBE MP vs AFLOW

Samed) Differente) Same Different Same Different

Both+U a) – – – – 84.5% 15.5%

One +U b) 73.3% 26.7% 92.0% 8.0% 89.5% 10.5%

Non +U c) 93.2% 6.8% 95.2% 4.8% 96.6% 3.4%

All 90.1% 9.9% 92.9% 7.1% 90.8% 9.2%

a) refers to structures that have elements applied with U parameters in both databases; b) refers to structures with only one database using U in some
elements in the structure; c) refers to structures without any element that is applied with U in either database; d) means the structure is considered as either
conductor or insulator in both databases; e) means it is considered as conductor in one database and insulator in another.
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As one can see, there are some scattering, but the correlation
coefficient between the MG+HSE result and the experi-
mental result is still 0.927, indicating a linear transformation
can still be used to convert the HSE result to the experimental
result. It is similar for the PBE results. The correlation
coefficients between MG+PBE, AFLOW+PBE, MP+PBE
and experimental values are 0.894, 0.965, 0.941, respec-
tively, not much different from the correlation coefficient for
the MG+HSE. In the above comparison with experiment,
both with U and no-U cases are used for AFLOW+PBE and
MP+PBE, the comparison will be worse if only the no-U
cases are used (as for the case of MG+PBE). This means,
although the use of U parameters increases the discrepancies
between different databases, it does reduce the error relative
to experimental values. If one draws an average linear fit to
the experimental data, it can be represented by the brown
dotted line in Figure 3. One can then see, the MG+HSE
(presented by the black line in Figure 4) are in the middle
between the PBE results and the experimental result. To
understand the situation from another perspective, we have
plotted the comparison for the 100 structure with experi-
mental band gaps in Figure 4(b), using experimental gap as
the x-axis and the calculated gap as the y-axis. As we can see,
although the use of hybrid functional significantly improves
calculated band gaps, in an average sense, the HSE still

significantly underestimates the band gaps especially for the
large band gap cases. This is because the original HSE is
fitted to yield the correct band gap for small band gap (1 to
2 eV) semiconductors. The fixed Fock exchange mixing
parameter can be understood as a fixed screening dielectric
effect (in screened exchange formalism) [31]. For large band
gap materials, the dielectric constant is usually much smaller,
hence one should use a larger mixing parameter. The use of a
fixed mixing parameter means an overestimation of the
screening for large band gap materials, which leads to un-
derestimation of the band gaps.

4 Conclusions

In conclusion, we introduce MG, a new database containing
both PBE and HSE bandgaps and compare it with existing
databases like MP and AFLOWand experimental values. We
find that, (1) among all calculation databases there are some
significant disagreements when classifying a structure into
metals and insulators; (2) the prime reason for deviations
among different database calculated with PBE is the use of
U; (3) when no U is used, PBE results between different
databases have correlation coefficients about 0.98, and RMS
errors of about 0.35 eV for the cases which are identified by

Figure 4 (Color online) MG HSE gaps vs MG PBE, MP, AFLOW and experimental gaps. Both no-U and with-U data are included for MP and AFLOW.
The black lines in (a) and (b) are y=x line. In (b), the fitted AFLOW and MP gaps (including the data with U) are almost on top of each other.

Table 2 HSE vs PBE for the metal-insulator classification

MG HSE vs MG PBE MG HSE vs MP MG HSE vs AFLOW

Same Different Same Different Same Different

PBE+U – – 84.0% 16.0% 91.3% 8.7%

No U 89.6% 10.4% 89.5% 10.5% 93.2% 6.8%

ALL 89.6% 10.4% 88.6% 11.4% 91.9% 8.1%
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both databases as insulators; (4) while HSE significantly
enlarges calculated band gaps, it still significantly under-
estimates band gaps of large band gap materials due to the
fixed value of mixing parameter. Thus, to build a calculation
database which gives decent band gaps, one should either
find a way to automatically regulate mixing parameters, or
use even more accurate methods, like GWmethod [32] or the
Wannier Koopman’s method [33–36].
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